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ABSTRACT
The expression of two metabolic enzymes, i.e., aldehyde dehydrogenase 7 family, member A1
(ALDH7A1) and lipase C, hepatic type (LIPC) by malignant cells, has been measured by immunohis-
tochemical methods in non-small cell lung carcinoma (NSCLC) biopsies, and has been attributed
negative and positive prognostic value, respectively. Here, we demonstrate that the protein levels of
ALDH7A1 and LIPC correlate with the levels of the corresponding mRNAs. Bioinformatic analyses of
gene expression data from 4921 cancer patients revealed that the expression of LIPC positively
correlates with abundant tumor infiltration by myeloid and lymphoid cells in NSCLC, breast carci-
noma, colorectal cancer and melanoma samples. In contrast, high levels of ALDH7A1 were asso-
ciated with a paucity of immune effectors within the tumor bed. These data reinforce the notion
that the metabolism of cancer cells has a major impact on immune and inflammatory processes in
the tumor microenvironment, pointing to hitherto unsuspected intersections between oncometabo-
lism and immunometabolism.
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Introduction

The metabolism of malignant cells is rewired towards anabolic
reactions that facilitate proliferation, resistance against
a hostile milieu, and immune escape.1–5 Although most of
the literature on oncometabolism has been elaborated based
on in vitro studies, in which malignant cells are usually
cultured as cell lines (i.e., in the absence of additional cellular
and non-cellular components of the tumor microenviron-
ment), it has become clear that tumors function like a micro-
ecosystem, in which different cell types interact to favor
tumor insurgence and progression.6,7 Moreover, the metabo-
lism of immune cells is largely influenced by the tumor
milieu, often skewing the differentiation of myeloid and lym-
phoid cell types towards a pro-inflammatory and immuno-
suppressive phenotype.8–10

Hence, oncometabolism and immunometabolism are con-
nected by a bidirectional and intimate relationship that has
profound implications for targeting cancer with metabolic
interventions. As a standalone example, fasting, i.e., the tem-
porary reduction of caloric intake, can limit tumor growth
in vitro, as well as in vivo, in human cancers xenografted into
immunodeficient mice.11 The effect of such treatments
depends to some extent on the intrinsic characteristic of
tumor cells including their dependency on glycolysis or
glutaminolysis.12–14 In addition, fasting can stimulate

anticancer immune responses, and this effect is likely to
stem from the activation of autophagy in cancer cells, favoring
their immune recognition,15,16 as well as from direct stimula-
tory effects on immune cells.17,18 Similarly, inhibition of gly-
colysis has been suggested to directly affect tumor growth, yet
also stimulates anticancer immune responses.19

Driven by these considerations, we decided to evaluate
the impact of specific metabolic enzymes on the immune
infiltrate of non-small cell lung carcinoma (NSCLC)
lesions, the prognosis of which is known to be dictated
by anticancer immune responses.20–28 Based on an admit-
tedly cell-autonomous perspective of NSCLC, we pre-
viously reported that the expression or activity enzymes
involved in (1) vitamin B6 metabolism, such as pyridoxal
kinase (PDXK) and aldehyde dehydrogenase 7 family,
member A1, (ALDH7A1), (2) lipid synthesis, such as
lipase C, hepatic type (LIPC), or (3) poly-ADP ribosyla-
tion, such as poly(ADP-ribose) polymerase 1 (PARP1)
would affect the response of NSCLC cells to chemotherapy
in vitro and in vivo, and affect patient prognosis.29–35

However, we have not yet explored the impact of these
enzymes on anticancer immune responses. Here, we inves-
tigated the possibility that such enzymes might affect
natural or therapy-driven anticancer immunosurveillance
using a bioinformatic approach.
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Results

Correlations of mRNA and protein expression levels for
ALDH7A1 and LIPC

The notion that LIPC, PARP1 and PDXK expression affects the
response of NSCLCs to therapy and the prognosis of NSCLC
patients has initially been acquired by studying the CHEMORES
cohort (www.chemores.ki.se), followed by validation in addi-
tional patient series. In particular, high LIPC expression (as
measured by immunohistochemistry), low PARP1 activity (as
measured by assessing the abundance of the PARP1 product
poly(ADP-ribose) using immunochemistry) and high PDXK
levels (as measured by immunohistochemistry) in NSCLC cells
were identified as favorable prognostic biomarkers for NSCLC
patients.29–33,35 For ALDH7A1, we did observe an effect on
cisplatin responses in vitro, yet we did not find a significant
impact on progression-free survival or overall survival in the
CHEMORES cohort,29 contrasting with a more recent report
demonstrating that high ALDH7A1 expression is associated
with recurrence in patients with surgically resected NSCLC.36

Since mRNA expression data (as determined by transcriptomic
analyses) in biopsies from cancer patients are considerably more
abundant than immunohistochemical data, we reasoned that
a meta-analysis of the impact of such enzymes on immune
infiltration should be based onmRNA rather than protein levels.
To this aim, we determined the correlation between mRNA and
protein levels for a number of gene products within the
CHEMORES database. Positive correlations between mRNA
levels (as determined by transcriptomic analysis) and protein
levels (as determined by immunohistochemistry) were observed
for ALDH17A, BCL2L1 (better known as BCL-XL)

29 and LIPC,
but not for PARP1, PARP2, pyridoxal phosphatase (PDXP) and
other proteins such as ALK receptor tyrosine kinase (ALK) and
WD repeat and SOCS box containing 2 (WSB2) (Figure 1A–D).
We also determined the correlation between the densities of
tumor-infiltrating CD8+ cytotoxic T lymphocytes (CTLs),
FOXP3+ regulatory T (TREG) cells, and DC-LAMP+ dendritic
cells (DCs) as determined by immunohistochemistry, and the
abundance of different immune subsets measured with the
Microenvironment Cell Populations-counter (MCP-counter)
method, which is based on the expression levels of signature
mRNAs.37 Convincing correlations were observed for CD8 and
CTLs, but neither for FOXP3 and TREG cells, nor for DC-LAMP
and DCs (Figure 1E). Driven by these results, we decided to
focus our study on ALDH7A1 and LIPC in relationship to the
tumor immune infiltrate.

Associations between immunosurveillance and the
expression of ALDH7A1, BCL2L1 and LIPC and across
multiple cancers

In samples from the CHEMORES cohort, the protein levels of
BCL2L1 and LIPC correlated with a prevalence of DCs as
determined by the MCP counter, while ALDH7A1 levels
exhibited a trend towards negative correlation with the abun-
dance of NK cells (Figure 2A). These correlations were much
more pronounced when only mRNA levels were analyzed.
ALDH7A1 mRNA levels negatively correlated with those of

multiple immune effectors (T cells, CTLs, TREG cells, B cells
and monocytic cells) (Figure 2B). BCL2L1 mRNA levels cor-
related with the abundance of the FOXP3 mRNA, as well as
with that of mRNAs from myeloid cell subsets (cells from the
monocytic lineage, myeloid DCs, neutrophils). Similarly, the
levels of LIPC mRNA positively correlated with those char-
acterizing a number of distinct immune subset (T cells, CD8+

T cells, TREG cells, B cells, cells from the monocytic lineage,
myeloid DCs and neutrophils).

The positive correlation between LIPC levels and immune
effectors could not be attributed to the preferential expression
of BCL2L1 or LIPC by leukocytes. Indeed, BCL2L1 and LIPC
were typically expressed by NSCLC cells, not by tumor-
infiltrating immune cells (Figure 3). Moreover, BCL2L1 and
LIPC mRNA levels are not particularly high in leukemic cells
or normal leukocytes subpopulations, as compared to
a negative control mRNA (TYR, which codes for the mela-
noma-specific protein tyrosinase) and a positive control
mRNA (CD45, encoding a common leukocyte antigen)
(Figure 4). Based on these considerations, it appears plausible
that it is indeed the expression of LIPC and ALDH7A1 by
malignant cells (as opposed to stromal elements) that exhibits
a positive and negative correlation, respectively, with the
immune infiltrate.

We next investigated the correlation between ALDH7A1,
BCL2L1 and LIPC mRNA expression levels and the abun-
dance of an array of immune cell subsets using the MCP-
counter. To this aim, we generated a database encompassing
gene expression data from 4921 patients with NSCLC, breast
cancer, colorectal carcinoma or melanoma (Table 1). The
correlations were calculated separately for each cohort of
patients (5 cohorts with NSCLC, 6 with breast cancer, 3
with colorectal carcinoma, 5 with melanoma) and then for
each cancer type together. ALDH7A1 mRNA levels were asso-
ciated with a paucity of immune cells and fibroblasts, in
particular amongst NSCLC and breast cancer patients
(Figure 5A). Similarly, BCL2L1 mRNA levels tended to corre-
late with limited infiltration by various immune subsets, in
particular CTLs and NK cells, in NSCLC, breast and colon
cancer, but not in melanoma (Figure 5B). The most specta-
cular associations were found for LIPC. The levels of LIPC
mRNA were associated with a poor immune infiltrate and
even a scarcity of other non-malignant cell types such as
endothelial cells and/or fibroblasts in all cancer types analyzed
in this study (Figure 5C). This does not seem to be related to
stem cells, as LIPC (nor ALDH7A1) did correlate with the
stem cell marker PROM1 (CD133) (see sheet 1 of
Supplemental Table S1). From these results, we conclude
that LIPC and ALDH7A1 constitute two cancer-relevant
metabolic enzymes whose expression correlates with the
immune infiltrate in an opposite fashion. Notwithstanding
the strong association between LIPC and ALDH7A1 mRNA
levels and the immune infiltrate, there was little or no correla-
tion between their abundance and patient survival across
multiple cancer types (Suppl. Fig. S1-S4). This might reflect
the possibility that ALDH7A1 and LIPC effects on cancer
prognosis cancel each other because of their ambiguous
impact on the immune infiltrate (which involves both positive
and regulatory elements) and tumor cell-intrinsic
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Figure 1. (a): Spearman’s correlation coefficients between mRNA levels (as determined by transcriptomic studies) and protein score (as determined by immuno-
histochemistry). Significant correlations are annotated: *p < 0.1, **p < 0.05, ***< 0.01, ****p < 0.0001). (b,c): Scatter plot representations of protein scores versus
mRNA levels for significant correlations from panel A (ALDH7A1, BCL2L1 and LIPC). Significant correlations are annotated: *p < 0.1, **p < 0.05, ***< 0.01, ****p
< 0.0001). ((e): Spearman’s correlation coefficients between immune infiltrate estimated by microarray expression deconvolution (MCP-counter method) and protein
score estimated from immunofluorescence).
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characteristics. Moreover, neither LIPC nor ALDH7A1 corre-
lated with the mRNA levels of PD-1, which codes for an
important immune checkpoint molecule relevant to NSCLC,
or LKB1, which codes for a metabolic regulator with relevance
to NSCLC (sheet 2,3 of Supplemental Table S1).

Discussion

ALDH7A1 is an aldehyde dehydrogenase with an important role
in the detoxification of aldehydes generated by alcohol metabo-
lism and lipid peroxidation. ALDH7A1 is best known for the fact
that loss-of-function mutations of this gene cause pyridoxine-
dependent epilepsy.38 Moreover, knockdown of ALDH7A1 sen-
sitizes NSCLC cells to the lethal effect of cisplatin.29 Interesting,
ALDH7A1 is overexpressed in cancer stem cells39 and is
druggable.40 However, to the best of our knowledge, the possi-
bility to inhibit ALDH7A1 to obtain antineoplastic effects has
not been investigated yet in preclinical models. In one study of
ALDH7A1 expression in NSCLC patients subjected to surgery,
low ALDH7A1 levels were accompanied by improved recur-
rence-free and overall survival.36 Mechanistically, this may be

linked to improved anticancer immunosurveillance, given that
ALDH7A1high tumors are immunologically desert. However,
how high levels of ALDH7A1might condition the tumor micro-
environment to cause a general paucity of immune effectors
remains to be determined.

BCL2L1 is well known for its cell-autonomous apoptosis- and
autophagy-inhibitory effects on cancer cells,41,42 and is well
possible that these features indirectly impact on the tumor
microenvironment. Although BCL2L1 was found to positively
correlate with the myeloid immune infiltrate in our exploratory
study (on the CHEMORES cohort), the correlations turned out
to be mostly negative (in particular within the NK cell and T cell
compartments) across several NSCLC, breast cancer and colon
cancer cohorts. How BCL2L1 expression (mostly by neoplastic
cells) can mediate such effects remains to be studied.

LIPC catalyzes the hydrolysis of triacylglycerides, and is
mostly known for its participation in the release of free fatty
acids from intermediate-density lipoproteins, thus generating
low-density lipoproteins.43 Genetic variants of LIPC affect
dyslipidemia, for instance in the context of coronary artery
disease.44,45 The function of LIPC in cancer is unknown. The

100 µm 100 µm

a b

c d

30 µm 30 µm

Figure 3. (a–d): Representative images for BCL2L1 (a,b) and LIPC (c,d) immunohistochemistry in NSCLC samples with high (a,c) or low (b,d) expression levels.
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only study dealing with the impact of LIPC on cancer prog-
nosis demonstrated that high LIPC protein levels correlate
with improved progression-free and overall survival in two
distinct NSCLC patient cohorts46 (and TCGA consortium).
Initially, we identified LIPC as a factor involved in cisplatin-
resistance in multiple different human NSCLC cell line.31 This
finding is apparently at odds with the fact that low LIPC
expression is a poor prognostic marker, yet such stage
I NSCLC patients might benefit from a platinum based che-
motherapy as LIPClow patients receiving adjuvant chemother-
apy exhibited an OS that was comparable to that of LIPChigh

patients, irrespective of their status of therapy receiver.29 The
data reported here suggest yet another possibility, namely that
elevated LIPC expression by malignant cells modulates the
tumor microenvironment to improve anticancer immunosur-
veillance. However, it is not possible to establish causal rela-
tionships at this point. Moreover, the potential mechanisms

through which LIPC would favor anticancer immune
responses (rather than pro-carcinogenic inflammatory pro-
cesses) remain entirely obscure.

The meta-analysis of different cancer types that we per-
formed suggests that an elevated expression of LIPC or
reduced ALDH7A1 levels similarly correlate with an increased
presence of multiple distinct immune cell subtypes, some of
which are involved in anticancer immunosurveillance (such as
DCs and CTLs) while others are rather immunosuppressive
(such as TREG cells and granulocytes).24 In this context, it may
be important to note that immunologically “cold” tumors
usually lack both immunostimulatory and suppressive cell
types altogether, while “hot” tumors contain a high frequency
of different immune cells subtypes because of the intrinsic
organization of the immune infiltrate that is particularly ela-
borate in breast cancer.47–53 Thus, LIPC and ALDH7A1 might
have an influence on the overall density of the leukocyte
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Figure 4. (a): mRNA abundance in Transcripts Per Million (TPM, as provided by The Human Protein Atlas website), for ALDH7A1, BCL2L1, CD45, LIPC and TYR in
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infiltrate, while other factors may affect the proportion and
functional interactions among positive and negative elements
of local immune circuitries.54

In sum, our work illustrates a potentially important crosstalk
between oncometabolism and immunometabolism that war-
rants further mechanistic and preclinical evaluation.

Material and methods

Data from CHEMORES

We used 58 NSCLC biopsies from the CHEMORES cohort
(http://www.chemores.ki.se), for which transcriptomic data
were available and protein scores for ALDH7A1, ALK,
BCL2L1, LIPC, poly(ADP)-ribose, PDXK, PDXP and
WSB2 were estimated by immunohistochemistry. We were
able to estimate the immune infiltration in 51 of 58 sam-
ples, using CD8, FOXP3 and DC-LAMP as immunohisto-
chemical biomarkers.

Immunohistochemistry

Immunohistochemistry was performed as previously
described,29,31,35,55 with primary antibodies specific for
ALD7AH1 (rabbit monoclonal antibody IgG #AB53278,

Abcam), ALK (mouse monoclonal IgG3 # M7195, Dako),
BCL2L1 (mouse monoclonal IgG2a #AHO0222, Invitrogen),
CD8 (monoclonal #NCL-L-CD8-295, Novocastra), DC-LAMP
(rat monoclonal IgG2a #DDX0191, Dendritics), FOXP3
(mouse monoclonal IgG #ab450, Abcam), LIPC (mouse
monoclonal IgG1, clone XHL1-1C, #sc-21741, Santa Cruz
Biotechnology), PAR (mouse monoclonal antibody IgG
#AM80, Calbiochem), PDXK (rabbit antiserum #AP7167A,
Abgent), PDXP (rabbit antiserum #HPA001099, Atlas
Antibodies) and WSB2 (rabbit antiserum #12124-2-AP,
Proteintech, Chicago, USA). Staining intensity was quantified
on a 0–3 scale, using as a reference the signal observed in
fibroblasts or endothelial cells (score 2), while the percentage
of positive tumor cells was scored on a 0–100% scale. These
variables were integrated into a single score (ranging from
0–300) by calculating the product between staining intensity
(0–3) and the percentage of tumor cells (0–100). Staining
intensity of DC-LAMP was quantified as the total number
of positive cells of 5 regions of interest. Staining intensity of
CD8 and FOXP3 were reported as the median density (num-
ber of positive cells per µm2) of 5 regions of interest. Positive
cells were automatically detected and counted with a custom
written macro for ImageJ software (Rasband, W.S., ImageJ,
U. S. National Institutes of Health, Bethesda, Maryland, USA,
https://imagej.nih.gov/ij/, 1997–2018.).

Table 1. List of databases analyzed in this paper.

Cancer
type Cohort name

Number of
samples Characteristics of the cohort Reference Platform

Melanoma Xu 83 Primary and metastatic tumors GSE8401 Affymetrix Human Genome
U133A Array

Melanoma Harlin 44 Metastatic tumors GSE12627 Affymetrix Human Genome
U133A Array

Melanoma Bogunovic 44 Metastatic tumors GSE19234 Affymetrix Human Genome U133
Plus 2.0 Array

Melanoma RikerMel 56 Primary and metastatic tumors GSE7553 Affymetrix Human Genome U133
Plus 2.0 Array

Melanoma Talantov 45 Primary tumors GSE3189 Affymetrix Human Genome
U133A Array

Colon BittColon 307 Various colon tumors GSE2109 Affymetrix Human Genome U95
Version 2 Array

Colorectal Smith 177 Various colorectal tumors GSE17536 Affymetrix Human Genome U133
Plus 2.0 Array

Colon TCGA 174 Various colon tumors TCGA consortium Agilent 244K Custom Gene
Expression G4502A-07–3

Breast METABRIC 1781 Various breast tumors METABRIC Study Illumina HT-12 v3
Breast TCGA 522 Various breast tumors TCGA consortium Agilent 244K Custom Gene

Expression G4502A-07–1
Breast Bonnefoi 161 Locally advance or large operable breast

tumors, estrogen receptor negative
GSE6861 Affymetrix Human X3P Array

Breast Hatzis 198 HER2 negative breast tumors GSE25065 Affymetrix Human Genome
U133A Array

Breast Tabchy 178 Various type of breast tumors before treatment GSE20271 Affymetrix Human Genome
U133A Array

Breast Korde 61 Various type of breast tumors, stage 2 or 3
breast cancer with tumor size ≥2cm at patients
selection, prior to AC treatment

GSE18728 Affymetrix Human Genome U133
Plus 2.0 Array

Lung AdenoConsortium 462 Various type of Adenocarcinomas Director’s Challenge
Lung Study, National
Cancer Institute (NHI)

Affymetrix Human Genome
U133A Array

Lung Lee 138 Adenocarcinoma and squamous cell carcinoma GSE8894 Affymetrix Human Genome U133
Plus 2.0 Array

Lung Okayama 226 Adenocarcinoma GSE31210 Affymetrix Human Genome U133
Plus 2.0 Array

Lung Raponi 130 Squamous cell carcinoma GSE4573 Affymetrix Human Genome
U133A Array

Lung TCGA 134 Squamous cell carcinoma TCGA consortium Affymetrix Human Genome
U133A Array
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Expression data in cell lines and immune cell subtypes

We considered two types of cell line expression: (1) expres-
sion in a general set of cell lines from The Protein Atlas56

website (https://www.proteinatlas.org/), for which Transcript
Per Million (TPM) data are available; (2) expression in
immune cell from the Immunological Genome Project57

(https://www.immgen.org/), for which normalized expression
(based on DSeq2 package58) is available.

Public microarray data

We used several public microarray datasets for different
pathologies: NSCLC59–61 (and TCGA consortium), breast
carcinoma46,62–65 (and TCGA consortium), colorectal
carcinoma66 (and TCGA consortium, http://www.intgen.
org/), melanoma.67–71 We considered only large datasets

(Table 1). R-package MCPcounter was used to estimate
immune cell infiltrates from microarray data.37 For corre-
lation analysis, the Spearman’s correlation coefficient and
test were employed. We used Fisher’s method on one-tail
correlation p values (positive for LIPC, negative for
ALDH7A1) in order to calculate “combined” p values for
Figure 5 (for the “combined” correlation coefficient, we
have chosen the one that has the smallest one-tail p value).

Survival analysis

For the analyses depicted in Supplemental Fig. S1, we used the
datasets for which clinical data was available: METBARIC,46

Breast TCGA (TCGA consortium) and Adenoconsortium.59

We used Cox regression analysis of the R survival package.72

For the analyses depicted in Supplemental Fig. S2, S3 and S4,
we extracted data from the PROGgeneV2 database (dataset

Figure 5. Spearman’s correlation coefficients between immune infiltrate estimates (MCP-counter method) and ALDH7A1 (A), BCL2L1 (B) and LIPC (C) mRNA levels
from different public microarray datasets, of NSCLC, breast cancer, colorectal carcinoma and melanoma (Table 1). Significant correlations are annotated: *p < 0.1, **p
< 0.05, ***< 0.01, ****p < 0.0001. For each pathology, a combined p value has been calculated as described in Materials and Methods.
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list is given in Supplemental Table S2).73 We used the
R-package meta74 for the summary analysis and forest plots.
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